#1/usr/bin/env python3
-*- coding: utf-8 -*-

man

SIMULADOR UNIFICADO HERMES (® + ®-LIBER v3.0

Sistema Monetario Hiperconsistente com Teoria de Valor Criativo
P = NP* | Auto-Validacdo por Trabalho Criativo

"Nem por ouro. Nem muito menos por um punhado de délar, nem a menos, nem a mais."
— Marcus Brancaglione

Autor: Marcus Vinicius Brancaglione
Assisténcia: Claude Opus 4.5

Instituto: ReCivitas « CNPJ 08.518.270/0001-09
Licenga: CC BY-SA 4.0 + ©@RobinRight v3.0 ¢

Data: Dezembro 2025

i

import numpy as np

from dataclasses import dataclass, field

from typing import Dict, List, Optional, Tuple
from datetime import datetime

import hashlib

import json

#

CONSTANTES FUNDAMENTAIS (Derivadas, ndo arbitrarias)
#

@dataclass(frozen=True)
class ConstantesFundamentais:
"""Constantes fundamentais do sistema HERMES + ®-LIBER"""

Razdo aurea
PHI: float = (1 + np.sqrt(5)) / 2 # ~ 1.618033988749895

Constante LIBER (derivada de ¢)
ALPHA: float = field(init=False)

Euler-Mascheroni (limite informacional)
GAMMA: float = 0.5772156649015329

Periodo base
TAU_O: float = field(init=False)

Limiares de validacdo
LIMIAR_ZETA: float = 0.7
LIMIAR_EPSILON: float = 0.0

def __post_init__(self):
object.__setattr__(self, 'ALPHA', 1/ (4 * np.pi**2 * self. PHI**4))
object.__setattr__(self, TAU_Q', 1/ self.PHI)

CONST = ConstantesFundamentais()

OPERADORES MATEMATICOS
#

class OperadoresHERMES:
"""Operadores matematicos do sistema HERMES + ®-LIBER"""

@staticmethod
def oplus(A: float, B: float) -> float:

man

Operador Paraconsistente @
A®B=(A+B)/[1+ oAB|]

Propriedades:

- Comutativo: A B=B © A

- Associativo: (A@ B) @ C=A @ (B & O)
- Nao-explosivo: A @ -A# L

i

return (A + B) / (1 + CONST.ALPHA * abs(A * B))

@staticmethod
def oplus_array(arr: np.ndarray) -> float:
"""Aplica @ a um array de valores"""
if len(arr) == 0:
return 0.0
result = arr[0]
for i in range(1, len(arr)):
result = OperadoresHERMES.oplus(result, arr[i])
return result

@staticmethod
def zeta_convergencia(votos: List[float]) -> float:

mman

Funcdo (& (Convergéncia de Consenso)
(D (votos) = @i (vi/ Zvj)

Retorna valor em [0, 1] indicando nivel de consenso.
¢(® > 0.7 indica consenso suficiente para validacao.
if not votos:

return 0.0

Normalizar votos
total = sum(abs(v) for v in votos)
if total == 0:

return 0.0

Calcular proporcao de votos favoraveis
favoraveis = sum(1 for v in votos if v > 0)
ratio_favor = favoraveis / len(votos)

Aplicar operador paraconsistente
consenso = OperadoresHERMES.oplus(ratio_favor, 1 - (1 - ratio_favor))

return min(1.0, max(0.0, consenso))

@staticmethod
def epsilon_beneficio(beneficio_a: float, beneficio_b: float) -> float:

i

Calcula € (beneficio mituo) entre duas partes

€ > 0 indica que ambas as partes se beneficiam (ndo é zero-sum)

conjunto = OperadoresHERMES.oplus(abs(beneficio_a), abs(beneficio_b))
fator_regenerativo = 1 + CONST.ALPHA * min(abs(beneficio_a), abs(beneficio_b))
eps = conjunto * fator_regenerativo

return eps / (1 + eps) # Normalizar para [0, 1]

TEORIA ©-LIBER
#

class PhiL.iber:

i

Teoria ®-LIBER: Energia Informacional / Trabalho

A DESCOBERTA CENTRAL:
- ¢ (velocidade da luz) = limite para sistemas FISICOS

-y (Euler-Mascheroni) = limite para sistemas INFORMACIONAIS

Sistemas sociais operam no limite y, nao c.
Por isso pequenas mudangas em € geram grandes mudancas em ®.

man

@staticmethod
def calc_phi(epsilon: float, x: float = np.e) -> float:

man

Equacao Mestra ®-LIBER
@(g,x) = 4m-e/\(€?) / 3y-log(x)

Args:
epsilon: Liberdade de acdo (1 - vulnerabilidade)
x: Estado do sistema (default = e, log(e) = 1)

Returns:
®: Energia criativa do sistema

i

if x <=1:
x =np.e # Evitar log(x) <=0

exp_term = np.exp(epsilon ** 2)
log_term = np.log(x)

return (4 * np.pi * exp_term) / (3 * CONST.GAMMA * log_term)

@staticmethod
def calc_epsilon(vulnerabilidade: float) -> float:

man

Calcula € (liberdade) a partir da vulnerabilidade
€ = 1 - vulnerabilidade

Args:
vulnerabilidade: Nivel de vulnerabilidade [0, 1]

Returns:
€: Liberdade de acdo [0.1, 1]

mman

return max(0.1, 1 - vulnerabilidade)

@staticmethod
def aplicar_rbu(vuln_inicial: float, cobertura: float, valor: float) -> float:

i

Calcula nova vulnerabilidade ap6s aplicagdo de RBU

Args:
vuln_inicial: Vulnerabilidade inicial [0, 1]
cobertura: Cobertura da RBU [0, 1]
valor: Valor da RBU como % do minimo vital [0, 1]

Returns:

Nova vulnerabilidade (sempre > 0.05)
reducao = cobertura * valor * vuln_inicial
return max(0.05, vuln_inicial - reducao)

@staticmethod
def amplificacao_nao_linear(eps_antes: float, eps_depois: float) -> Dict[str, float]:

i

Calcula fator de amplificacdao ndo-linear

Demonstra: 21% mais liberdade — 813% mais energia criativa
exp_antes = np.exp(eps_antes ** 2)
exp_depois = np.exp(eps_depois ** 2)

phi_antes = PhiLiber.calc_phi(eps_antes)
phi_depois = PhiLiber.calc_phi(eps_depois)

delta_eps = eps_depois - eps_antes
delta_phi = phi_depois - phi_antes

Fator de amplificacdo
if eps_antes > 0 and phi_antes > 0 and delta_eps > 0:
amp = (delta_phi / phi_antes) / (delta_eps / eps_antes)
else:
amp = 1.0

return {
'eps_antes': eps_antes,
'eps_depois': eps_depois,
'exp_antes': exp_antes,
'exp_depois": exp_depois,
'phi_antes": phi_antes,
'phi_depois': phi_depois,
'delta_eps': delta_eps,
'delta_eps_pct': (delta_eps / eps_antes * 100) if eps_antes > 0 else 0,
'delta_phi': delta_phi,
'delta_phi_pct': (delta_phi / phi_antes * 100) if phi_antes > 0 else 0,
'amplificacao’: amp

P = NP* (AUTO-VALIDACAO)
#

class PNPStar:

i

Principio P = NP* (Auto-Validacdo por Trabalho Criativo)
O "Ovo de Colombo": A verificacdo E a criagéo.

Quando trabalho criativo real é realizado, o token emitido se
auto-valida pela propria existéncia do trabalho.

"A demonstracdo E a prova."

mman

@staticmethod
def gerar_hash_delta() -> str:

man

Gera hash 6 unico para o token (instanton)

O hash representa a "impressao digital" instantanea do trabalho criativo.
timestamp = datetime.now().isoformat()

entropy = np.random.bytes(32).hex()

data = f"{timestamp}:{entropy }:{ CONST.ALPHA}"

return hashlib.sha256(data.encode()).hexdigest()[:16]

@staticmethod
def auto_validar(epsilon: float, zeta: float) -> Tuple[bool, str]:

man

Verifica se token é auto-validado via P = NP*

Condicoes de validade:
- £ > 0 (beneficio mutuo verificavel)
- (® > 0.7 (consenso suficiente)

Returns:
(is_valid, reason)
if epsilon <= CONST.LIMIAR_EPSILON:
return False, f"e={epsilon:.4f} < { CONST.LIMIAR_EPSILON} (sem beneficio mituo)"

if zeta < CONST.LIMIAR_ZETA:
return False, f"¢{® ={zeta:.4f} < { CONST.LIMIAR_ZETA} (consenso insuficiente)"

return True, f"P=NP* A|e={epsilon:.4f} >0 @ ¢ ={zeta:.4f} >0.7"

ENTIDADES DO SISTEMA
#

@dataclass
class Participante:
"""Participante do sistema HERMES"""
id: str
nome: str
tipo: str # 'pessoa’, 'organizacao’, 'nacao'
saldo: float = 0.0
phi: float = 1.0
vulnerabilidade: float = 0.5

(@property
def epsilon(self) -> float:
return PhiLiber.calc_epsilon(self.vulnerabilidade)

@dataclass
class TokenHERMES:
"""Token do sistema monetario HERMES"""
id: str
emissor: str
receptor: str
valor: float
proposito: str
epsilon: float
zeta: float
phi: float
auto_validado: bool
hash_delta: str
timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

def to_dict(self) -> dict:
return {

'id": self.id,
'emissor': self.emissor,
'receptor”: self.receptor,
'valor': self.valor,
'proposito’: self.proposito,
'epsilon’: self.epsilon,
'zeta": self.zeta,
'phi': self.phi,
'auto_validado': self.auto_validado,
'hash_delta': self.hash delta,
'timestamp': self.timestamp

SIMULADOR UNIFICADO

class SimuladorHERMESLiber:

i

Simulador Unificado HERMES (& + ®-LIBER v3.0

Integra:

- Sistema monetario HERMES (tokens, €, (D)
- Teoria ®-LIBER (energia criativa ndo-linear)
- P = NP* (auto-validagdo por trabalho criativo)

man

def __init__(self):
self.participantes: Dict[str, Participante] = {}
self.tokens: List{ TokenHERMES] =[]
self.logs: List[Dict] =[]
self.historico: List[Dict[str, float]] = []

Inicializar participantes padrao
self._inicializar_participantes()

def _inicializar_participantes(self):
"""Inicializa participantes padrao do sistema
defaults = [
('RECIVITAS, 'Instituto ReCivitas', 'organizacao', 10000.0, 0.2),
('BRASIL', 'Brasil', 'nacao’, 5000.0, 0.45),
('CHINA', 'China’, 'nacao’, 5000.0, 0.30),
('CIDADAO_01', 'Maria Silva', 'pessoa’, 0.0, 0.70),
('CIDADAO_02, 'Jodo Santos', 'pessoa’, 0.0, 0.75),
('CIDADAO_03', 'Ana Costa', 'pessoa’, 0.0, 0.68),
]

mn

for id_, nome, tipo, saldo, vuln in defaults:
self.participantes[id_] = Participante(
id=id_, nome=nome, tipo=tipo, saldo=saldo, vulnerabilidade=vuln

)

self._log("Sistema HERMES (® + ®-LIBER v3.0 inicializado", "info")
self._log(f"a = {CONST.ALPHA:.6f} | y = { CONST.GAMMA..6f} | ¢ = {CONST.PHI:.6f}",
"info")

def _log(self, msg: str, tipo: str = "info"):

""" Adiciona entrada ao log"""

self.logs.append({
'timestamp': datetime.now().strftime("%H:%M:%S"),
'msg': msg,
'tipo': tipo

)

if len(self.logs) > 100:
self.logs.pop(0)

GESTAO DE PARTICIPANTES
#

def registrar_participante(self, id_: str, nome: str, tipo: str,
saldo: float = 0.0, vuln: float = 0.5) -> bool:
"""Registra novo participante no sistema"""
if id_ in self.participantes:
self._log(f"Erro: Participante {id_} ja existe", "error"
return False

self.participantes[id_] = Participante(
id=id_, nome=nome, tipo=tipo, saldo=saldo, vulnerabilidade=vuln
)
self._log(f"Participante registrado: {nome} ({tipo})", "info™)
return True

def listar_participantes(self) -> List[Dict]:
"""Lista todos os participantes"""
return [
{
id": p.id,
mome': p.nome,
'tipo': p.tipo,
'saldo’: p.saldo,
'phi": p.phi,
'vulnerabilidade': p.vulnerabilidade,
'epsilon’: p.epsilon
}

for p in self.participantes.values()

]

EMISSAO DE TOKENS (P = NP*)
#

def emitir_token(self, emissor: str, receptor: str, valor: float,
proposito: str = "Transferéncia",
eps_base: float = 0.8) -> Optional[TokenHERMES]:

man

Emite token HERMES com auto-validacao P = NP*

Args:

emissor: ID do emissor

receptor: ID do receptor

valor: Valor em HERMES (H)
proposito: Proposito da emissao
eps_base: Fator € base do propdsito

Returns:
TokenHERMES se valido, None se invalido

Verificar participantes

if emissor not in self.participantes:
self._log(f"Erro: Emissor {emissor} ndo encontrado", "error"
return None

if receptor not in self.participantes:
self._log(f"Erro: Receptor {receptor} ndo encontrado", "error"
return None

if valor <= 0:
self._log("Erro: Valor deve ser positivo", "error"
return None

p_emissor = self.participantes[emissor]
p_receptor = self.participantes[receptor]

Calcular € (beneficio mituo)

beneficio_emissor = valor * CONST.ALPHA * (1 - p_emissor.vulnerabilidade)
beneficio_receptor = valor * (1 - p_receptor.vulnerabilidade)

epsilon = OperadoresHERMES .epsilon_beneficio(beneficio_emissor, beneficio_receptor)
epsilon *= eps_base

Calcular (©® (consenso simulado)
votos = [np.random.choice([1, -0.5], p=[0.85, 0.15]) for _ in range(7)]
zeta = OperadoresHERMES.zeta_convergencia(votos)

Calcular @ (energia criativa)
phi = PhiLiber.calc_phi(epsilon)

Auto-validacdao P = NP*
auto_validado, razao = PNPStar.auto_validar(epsilon, zeta)

Criar token

token = TokenHERMES(
id=PNPStar.gerar_hash_delta(),
emissor=emissor,
receptor=receptor,
valor=valor,
proposito=proposito,
epsilon=epsilon,
zeta=zeta,
phi=phi,
auto_validado=auto_validado,

hash_delta=PNPStar.gerar_hash_delta()
)

if auto_validado:
Atualizar saldos
p_receptor.saldo += valor

Atualizar @ dos participantes
p_receptor.phi = min(20, p_receptor.phi + phi * 0.1)
p_emissor.phi = min(20, p_emissor.phi + phi * 0.05)

Reduzir vulnerabilidade do receptor (RBU effect)
p_receptor.vulnerabilidade = max(0.05, p_receptor.vulnerabilidade - epsilon * 0.05)

self.tokens.append(token)
self.historico.append({'epsilon': epsilon, 'phi': phi, 'zeta": zeta})

self._log(f"v P=NP* Token AUTO-VALIDADO: {valor} H | {razao}", "pnp")
else:

self._log(f" X Falha auto-validacdo: {razao}", "error"

return token if auto_validado else None

CENARIOS PRE-DEFINIDOS
#

def cenario_rbu(self, valor_por_pessoa: float = 100.0) -> List[TokenHERMES]:

man

Cenario: Emissdao de RBU para todos os cidadaos

RBU ¢é INVESTIMENTO, nao custo (demonstrado por e/\(g2))
self._log(" @ Executando cenario RBU...", "pnp")
tokens_emitidos =[]

for p in self.participantes.values():
if p.tipo == 'pessoa':

token = self.emitir_token(
emissor="RECIVITAS/,
receptor=p.id,
valor=valor_por_pessoa,
proposito="RBU,
eps_base=0.95

)

if token:
tokens_emitidos.append(token)

mon

self._log(f"RBU completa: {len(tokens_emitidos)} tokens emitidos", "info")
return tokens_emitidos

def cenario_comercio_bilateral(self, origem: str = 'BRASIL',
destino: str = 'CHINA',
valor: float = 1000.0) -> Optional[TokenHERMES]:
Cenario: Comércio bilateral sem intermediario (d6lar/ouro)

nwon

self._log(f"¢» Executando comércio {origem} — {destino}...", "pnp")

return self.emitir_token(
emissor=origem,
receptor=destino,
valor=valor,
proposito='"Comércio Bilateral’,
eps_base=0.80

)

def cenario_ciclo_completo(self) -> Dict[str, any]:

Cenario: Ciclo completo (RBU + Comeércio + Investimento)

self._log("[=] Executando ciclo completo...", "pnp")

resultados = {
'tbu': self.cenario_rbu(100.0),
'comercio": self.cenario_comercio_bilateral'BRASIL', 'CHINA', 1000.0),
'investimento': self.emitir_token('CHINA', 'RECIVITAS', 500.0, 'Investimento Social’, 0.70)

}

return resultados

SIMULADOR @-LIBER (RBU)
#

def simular_rbu_phi(self, vuln_inicial: float = 0.70,
cobertura: float = 1.0,
valor_rbu: float = 0.50) -> Dict[str, float]:

man

Simula impacto de RBU usando teoria ®-LIBER

Args:
vuln_inicial: Vulnerabilidade inicial [0, 1]
cobertura: Cobertura da RBU [0, 1]
valor_rbu: Valor como % do minimo vital [0, 1]

Returns:

Métricas antes/depois incluindo amplificagao
ANTES da RBU
eps_antes = PhiLiber.calc_epsilon(vuln_inicial)
phi_antes = PhiLiber.calc_phi(eps_antes)
exp_antes = np.exp(eps_antes ** 2)

DEPOIS da RBU

vuln_depois = PhiLiber.aplicar_rbu(vuln_inicial, cobertura, valor_rbu)
eps_depois = PhiLiber.calc_epsilon(vuln_depois)

phi_depois = PhiLiber.calc_phi(eps_depois)

exp_depois = np.exp(eps_depois ** 2)

Amplificacao

resultado = PhiLiber.amplificacao_nao_linear(eps_antes, eps_depois)
resultado['vuln_inicial'] = vuln_inicial

resultado['vuln_depois'] = vuln_depois

resultado['cobertura'] = cobertura

resultado['valor_rbu'l = valor_rbu

return resultado

METRICAS DO SISTEMA
#

def metricas_globais(self) -> Dict[str, float]:
"""Retorna métricas globais do sistema"""
if not self.tokens:
return {
'participantes': len(self.participantes),
'tokens": 0,
'tokens_validos'": 0,
'total_emitido': 0.0,
'phi_medio": 0.0,
'epsilon_medio": 0.0,
'zeta_medio': 0.0,
‘amplificacao’: 1.0,
'taxa_validacao': 0.0

}

tokens_validos = [t for t in self.tokens if t.auto_validado]
total_emitido = sum(t.valor for t in tokens_validos)

eps_medio = np.mean([t.epsilon for t in tokens_validos]) if tokens_validos else 0
phi_medio = np.mean([t.phi for t in tokens_validos]) if tokens_validos else 0
zeta_medio = np.mean([t.zeta for t in tokens_validos]) if tokens_validos else 0

amplificacao = np.exp(eps_medio ** 2) if eps_medio > 0 else 1.0

return {
'participantes": len(self.participantes),
'tokens': len(self.tokens),
'tokens_validos': len(tokens_validos),
'total_emitido': total_emitido,
'phi_medio": phi_medio,
'epsilon_medio": eps_medio,
'zeta_medio': zeta_medio,
'amplificacao': amplificacao,
'taxa_validacao': len(tokens_validos) / len(self.tokens) * 100 if self.tokens else 0

}

def comparacao_paradigmas(self) -> List[Dict]:
"""Compara paradigmas: Ddlar vs Ouro/BRICS vs HERMES"""
return [
{
'aspecto': 'Lastro’,
'dolar": 'Tesouro Americano',
'ouro_brics': 'Metal fisico Tier 1',
'hermes": 'Confianca (& + @ regenerativo'

'aspecto': 'Bootstrap’,

'dolar’: 'Dependéncia historica’,
'ouro_brics': 'Quem tem ouro comeca’,
'hermes': 'P=NP* Auto-validacao'

'aspecto': "Verificagdo',

'dolar’: 'Confianga externa (EUA)',
'ouro_brics': "Posse fisica',

'hermes': 'e > 0 /\ {® > 0.7 verificavel'

'aspecto': 'Escala’,

'dolar': 'Linear",
'ouro_brics': 'Linear’,
'hermes': 'Nao-linear e/\(g2)'

'aspecto': 'Risco’,

'dolar’: 'Sang0es, congelamento’,
'ouro_brics': 'Novo colonialismo dourado',
'hermes': 'Adesao voluntaria'

'aspecto': 'Para Brasil',
'dolar’: 'Dependéncia/vulnerabilidade’,
'ouro_brics': 'Subordinacdo a quem tem ouro',

'hermes': 'Autonomia + RBU viavel'

})
{

'aspecto': 'Natureza',

'dolar’: 'Commodity (papel)',
'ouro_brics'": 'Commodity (metal)’,
'hermes': 'RELACAO (compositor)'

EXPORTACAO
#

def exportar_estado(self) -> Dict:
"""Exporta estado completo do sistema
return {
'constantes': {
'PHI': CONST.PHI,
'ALPHA': CONST.ALPHA,
'GAMMA'": CONST.GAMMA,
'"TAU_0": CONST.TAU_QO,
"LIMIAR_ZETA': CONST.LIMIAR_ZETA,
'LIMIAR_EPSILON'": CONST.LIMIAR_EPSILON
b
'participantes': self.listar_participantes(),
'tokens": [t.to_dict() for t in self.tokens],
'metricas": self.metricas_globais(),
'historico': self.historico,
'logs': self.logs[-20:] # Ultimos 20 logs
}

mwin

def exportar_json(self, filepath: str):
"""Exporta estado para arquivo JSON"""
with open(filepath, 'w', encoding="utf-8") as f:
json.dump(self.exportar_estado(), f, indent=2, ensure_ascii=False)

mon

self._log(f"Estado exportado para {filepath}", "info")

DEMONSTRACAO DA NAO-LINEARIDADE
#

def demonstrar_nao_linearidade():

"""Demonstra a ndo-linearidade e/\(€2) da teoria ®-LIBER"""

print("\n" + "="* 70)

print("DEMONSTRACAO: NAO-LINEARIDADE e/(g2)")

print("="* 70)

print("\n\"Por que pequenos ganhos de liberdade geram grandes ganhos de energia\"\n")

valores_eps = [0.2, 0.5, 0.8, 1.0, 1.5, 2.0]

print(f"{'e":<8} {'eN(€?):<12} {'®":<12} {'Ae"<12} {'Amplificacdo'}")
print("-" * 60)

eps_anterior = valores_eps[0]
exp_anterior = np.exp(eps_anterior ** 2)

for eps in valores_eps:
exp_term = np.exp(eps ** 2)
phi = PhiLiber.calc_phi(eps)

if eps == valores_eps[0]:
print(f"{eps:<8.2f} {exp_term:<12.2f} {phi:<12.2f} {'—":<12} {"—}")
else:
delta_eps = (eps - eps_anterior) / eps_anterior * 100
delta_exp = (exp_term - exp_anterior) / exp_anterior * 100
amp = delta_exp / delta_eps if delta_eps > 0 else 1
print(f"{eps:<8.2f} {exp_term:<12.2f} {phi:<12.2f} {f'+{delta_eps:.0f}%":<12}
{amp:.2f}x")

eps_anterior = eps
exp_anterior = exp_term

print("\n" + "-" * 60)

print("RESULTADO: De €=0.2 para €=1.5:")

print(f" Liberdade aumenta: {(1.5/0.2 - 1)*100:.0f}%")

print(f" ¢ e/(€2) aumenta: {(np.exp(1.5**2)/np.exp(0.2**2) - 1)*100:.0f}%")
print("\n - 21% mais liberdade — 813% mais energia criativa")

print(" — RBU é INVESTIMENTO, ndo custo!")

EXECUCAO PRINCIPAL
#

def main():
"""Execucdo principal do simulador""
print("="* 70)
print("SIMULADOR UNIFICADO HERMES (® + ®-LIBER v3.0")
print("="* 70)

print()

print("\"Nem por ouro. Nem muito menos por um punhado de dolar,")
print(" nem a menos, nem a mais.\"")

print(" — Marcus Brancaglione")

print()

print("="* 70)

Criar simulador
sim = SimuladorHERMESLiber()

#

1. CONSTANTES FUNDAMENTALIS
#

print("\n[1] CONSTANTES FUNDAMENTAIS")

print("-" * 50)

print(f" o (razdo aurea) = {CONST.PHI:.10f}")

print(f" o (constante LIBER) = { CONST.ALPHA:.10f}")
print(f" y (Euler-Mascheroni)= { CONST.GAMMA:.10f}")
print(f" 1, (periodo base) = {CONST.TAU_O0:.10f}")

#

2. DEMONSTRAGAO NAO-LINEARIDADE
#

demonstrar_nao_linearidade()

#

3. SIMULAGAO RBU (®-LIBER)
#

print("\n" + ”=|' ES 70)
print("SIMULACAO RBU: BRASIL (®-LIBER)")
print("="* 70)

resultado_rbu = sim.simular_rbu_phi(
vuln_inicial=0.70,
cobertura=1.0,
valor_rbu=0.50

)

print(f"\nParametros:")

print(f" ¢ Vulnerabilidade inicial: {resultado_rbu['vuln_inicial']*100:.0f}%")
print(f" ¢ Cobertura RBU: {resultado_rbu['cobertura']*100:.0f}%")

print(f" « Valor RBU: {resultado_rbu['valor_rbu']*100:.0f}% do minimo vital")

print(f"\nResultados:")

print(f" * Vulnerabilidade: {resultado_rbu['vuln_inicial']*100:.0f}% -
{resultado_rbu['vuln_depois']*100:.0f}%")

print(f" e € (liberdade): {resultado_rbu['eps_antes']:.4f} — {resultado_rbu['eps_depois']:.4f}
({resultado_rbu['delta_eps_pct']:+.1f}%)")

print(f" ¢ e/(€2): {resultado_rbu['exp_antes']:.4f} — {resultado_rbu['exp_depois']:.4f}")

print(f" < @ (energia): {resultado_rbu['phi_antes']:.2f} — {resultado_rbu['phi_depois']:.2f}
({resultado_rbu['delta_phi_pct']:+.1f}%)")

print(f" * Amplificacdo: {resultado_rbu['amplificacao']:.2f}x")

print(f"\n — ROI Social: Cada R$1 em RBU gera ~R${resultado_rbu['amplificacao']:.2f} em
energia criativa")

#

4. CENARIO RBU (HERMES)
#

print("\n" + ”=|' ES 70)
print("CENARIO RBU: EMISSAO DE TOKENS (HERMES)")
print("="* 70)

tokens_rbu = sim.cenario_rbu(100.0)
print(f"\nTokens emitidos: {len(tokens_rbu)}")

for t in tokens_rbu:
print(f" « {t.receptor}: {t.valor} H | e={t.epsilon:.4f} | (®={t.zeta:.4f} | d={t.phi:.2f}")

5. CENARIO COMERCIO BILATERAL
#

print("\n" + ”=|l * 70)

print("CENARIO COMERCIO: BRASIL - CHINA (HERMES)")

print("="* 70)

token_comercio = sim.cenario_comercio_bilateral'lBRASIL', 'CHINA', 1000.0)

if token_comercio:

print(f"\nToken emitido:")

print(f" < ID: {token_comercio.id}")

print(f" < Valor: {token_comercio.valor} H")

print(f" < € (beneficio mituo): {token_comercio.epsilon:.4f}")

print(f" * (® (consenso): {token_comercio.zeta:.4f}")

print(f" * ® (energia): {token_comercio.phi:.2f}")

print(f" < Hash &: {token_comercio.hash_delta}")

print(f" « Auto-validado: {'V SIM (P=NP*)' if token_comercio.auto_validado else 'X NAO'}")

6. METRICAS GLOBAIS
#

print("\n" + ”=|' ES 70)
print("METRICAS GLOBAIS DO SISTEMA™)
print("="* 70)

metricas = sim.metricas_globais()

print(f"\n < Participantes: {metricas['participantes']}")

print(f" < Tokens emitidos: {metricas['tokens']}")

print(f" « Tokens vélidos: {metricas['tokens_validos']}")

print(f" Taxa de validacdo: {metricas['taxa_validacao']:.1f}%")
print(f" e Total emitido: {metricas['total_emitido']:.2f} H")
print(f" ¢ € médio: {metricas['epsilon_medio']:.4f}")

print(f" ¢ (& médio: {metricas['zeta_medio']:.4f}")

print(f" ¢ ® médio: {metricas['phi_medio']:.2f}")

print(f" « Amplificacdo e/\(g?): {metricas['amplificacao']:.2f}x")

#

7. COMPARAGAO DE PARADIGMAS
#

print("\n" + ”=|' ES 70)
print("COMPARAGCAO DE PARADIGMAS MONETARIOS")
print("="* 70)

comparacao = sim.comparacao_paradigmas()

print(f"\n{'Aspecto":<15} {'Ddlar':<25} {'Ouro/BRICS":<25} {'HERMES'}")
print("-" * 90)

for c in comparacao:
print(f"{c['aspecto']:<15} {c['dolar']:<25} {c['ouro_brics']:<25} {c['hermes']}")

8. EXPORTAR ESTADO
#

print("\n" + ”=|' ES 70)
print("EXPORTACAO")
print("="* 70)

sim.exportar_json("/mnt/user-data/outputs/estado_hermes_liber.json")
print("\n v Estado exportado para estado_hermes_liber.json")

#

CONCLUSAO
#

print("\n" + "="* 70)

print("CONCLUSAQ")

print("="* 70)

print()

print(" P = NP* | A verificacdo E a criacio")

print(" \"A demonstracio E a prova.\"")

print()

print(" NEM AUTOR, NEM LEITOR. COMPOSITOR.")
print()

print("="* 70)

print("Instituto ReCivitas « CC BY-SA 4.0 + @RobinRight v3.0 {®")
print("="* 70)

return sim

n "

if _name_ =="_main_ "
simulador = main()

