
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
══
══════════════════════
SIMULADOR UNIFICADO HERMES ζ + Φ-LIBER v3.0⊕
══
══════════════════════

Sistema Monetário Hiperconsistente com Teoria de Valor Criativo
P = NP* | Auto-Validação por Trabalho Criativo

"Nem por ouro. Nem muito menos por um punhado de dólar, nem a menos, nem a mais."
 — Marcus Brancaglione

Autor: Marcus Vinicius Brancaglione
Assistência: Claude Opus 4.5
Instituto: ReCivitas • CNPJ 08.518.270/0001-09
Licença: CC BY-SA 4.0 + RobinRight v3.0 ζ⊕⊕

Data: Dezembro 2025
══
══════════════════════
"""

import numpy as np
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
from datetime import datetime
import hashlib
import json

══
══════════════════════
CONSTANTES FUNDAMENTAIS (Derivadas, não arbitrárias)

══
══════════════════════

@dataclass(frozen=True)
class ConstantesFundamentais:
 """Constantes fundamentais do sistema HERMES + Φ-LIBER"""

 # Razão áurea
 PHI: float = (1 + np.sqrt(5)) / 2 # ≈ 1.618033988749895

 # Constante LIBER (derivada de φ)
 ALPHA: float = field(init=False)

 # Euler-Mascheroni (limite informacional)
 GAMMA: float = 0.5772156649015329

 # Período base
 TAU_0: float = field(init=False)

 # Limiares de validação
 LIMIAR_ZETA: float = 0.7
 LIMIAR_EPSILON: float = 0.0

 def __post_init__(self):
 object.__setattr__(self, 'ALPHA', 1 / (4 * np.pi**2 * self.PHI**4))
 object.__setattr__(self, 'TAU_0', 1 / self.PHI)

CONST = ConstantesFundamentais()

══
══════════════════════
OPERADORES MATEMÁTICOS

══
══════════════════════

class OperadoresHERMES:
 """Operadores matemáticos do sistema HERMES + Φ-LIBER"""

 @staticmethod
 def oplus(A: float, B: float) -> float:
 """
 Operador Paraconsistente ⊕

 A B = (A + B) / [1 + α|AB|]⊕

 Propriedades:
 - Comutativo: A B = B A⊕ ⊕
 - Associativo: (A B) C = A (B C)⊕ ⊕ ⊕ ⊕
 - Não-explosivo: A ¬A ≠ ⊕ ⊥
 """
 return (A + B) / (1 + CONST.ALPHA * abs(A * B))

 @staticmethod
 def oplus_array(arr: np.ndarray) -> float:
 """Aplica a um array de valores"""⊕
 if len(arr) == 0:
 return 0.0
 result = arr[0]
 for i in range(1, len(arr)):
 result = OperadoresHERMES.oplus(result, arr[i])
 return result

 @staticmethod
 def zeta_convergencia(votos: List[float]) -> float:

 """
 Função ζ (Convergência de Consenso)⊕

 ζ (votos) = ᵢ (vᵢ / Σv)⊕ ⊕ ⱼ

 Retorna valor em [0, 1] indicando nível de consenso.
 ζ > 0.7 indica consenso suficiente para validação.⊕
 """
 if not votos:
 return 0.0

 # Normalizar votos
 total = sum(abs(v) for v in votos)
 if total == 0:
 return 0.0

 # Calcular proporção de votos favoráveis
 favoraveis = sum(1 for v in votos if v > 0)
 ratio_favor = favoraveis / len(votos)

 # Aplicar operador paraconsistente
 consenso = OperadoresHERMES.oplus(ratio_favor, 1 - (1 - ratio_favor))

 return min(1.0, max(0.0, consenso))

 @staticmethod
 def epsilon_beneficio(beneficio_a: float, beneficio_b: float) -> float:
 """
 Calcula ε (benefício mútuo) entre duas partes

 ε > 0 indica que ambas as partes se beneficiam (não é zero-sum)
 """
 conjunto = OperadoresHERMES.oplus(abs(beneficio_a), abs(beneficio_b))
 fator_regenerativo = 1 + CONST.ALPHA * min(abs(beneficio_a), abs(beneficio_b))
 eps = conjunto * fator_regenerativo
 return eps / (1 + eps) # Normalizar para [0, 1]

══
══════════════════════
TEORIA Φ-LIBER

══
══════════════════════

class PhiLiber:
 """
 Teoria Φ-LIBER: Energia Informacional / Trabalho

 A DESCOBERTA CENTRAL:
 - c (velocidade da luz) = limite para sistemas FÍSICOS

 - γ (Euler-Mascheroni) = limite para sistemas INFORMACIONAIS

 Sistemas sociais operam no limite γ, não c.
 Por isso pequenas mudanças em ε geram grandes mudanças em Φ.
 """

 @staticmethod
 def calc_phi(epsilon: float, x: float = np.e) -> float:
 """
 Equação Mestra Φ-LIBER

 Φ(ε,x) = 4π·e^(ε²) / 3γ·log(x)

 Args:
 epsilon: Liberdade de ação (1 - vulnerabilidade)
 x: Estado do sistema (default = e, log(e) = 1)

 Returns:
 Φ: Energia criativa do sistema
 """
 if x <= 1:
 x = np.e # Evitar log(x) <= 0

 exp_term = np.exp(epsilon ** 2)
 log_term = np.log(x)

 return (4 * np.pi * exp_term) / (3 * CONST.GAMMA * log_term)

 @staticmethod
 def calc_epsilon(vulnerabilidade: float) -> float:
 """
 Calcula ε (liberdade) a partir da vulnerabilidade

 ε = 1 - vulnerabilidade

 Args:
 vulnerabilidade: Nível de vulnerabilidade [0, 1]

 Returns:
 ε: Liberdade de ação [0.1, 1]
 """
 return max(0.1, 1 - vulnerabilidade)

 @staticmethod
 def aplicar_rbu(vuln_inicial: float, cobertura: float, valor: float) -> float:
 """
 Calcula nova vulnerabilidade após aplicação de RBU

 Args:
 vuln_inicial: Vulnerabilidade inicial [0, 1]
 cobertura: Cobertura da RBU [0, 1]
 valor: Valor da RBU como % do mínimo vital [0, 1]

 Returns:
 Nova vulnerabilidade (sempre > 0.05)
 """
 reducao = cobertura * valor * vuln_inicial
 return max(0.05, vuln_inicial - reducao)

 @staticmethod
 def amplificacao_nao_linear(eps_antes: float, eps_depois: float) -> Dict[str, float]:
 """
 Calcula fator de amplificação não-linear

 Demonstra: 21% mais liberdade → 813% mais energia criativa
 """
 exp_antes = np.exp(eps_antes ** 2)
 exp_depois = np.exp(eps_depois ** 2)

 phi_antes = PhiLiber.calc_phi(eps_antes)
 phi_depois = PhiLiber.calc_phi(eps_depois)

 delta_eps = eps_depois - eps_antes
 delta_phi = phi_depois - phi_antes

 # Fator de amplificação
 if eps_antes > 0 and phi_antes > 0 and delta_eps > 0:
 amp = (delta_phi / phi_antes) / (delta_eps / eps_antes)
 else:
 amp = 1.0

 return {
 'eps_antes': eps_antes,
 'eps_depois': eps_depois,
 'exp_antes': exp_antes,
 'exp_depois': exp_depois,
 'phi_antes': phi_antes,
 'phi_depois': phi_depois,
 'delta_eps': delta_eps,
 'delta_eps_pct': (delta_eps / eps_antes * 100) if eps_antes > 0 else 0,
 'delta_phi': delta_phi,
 'delta_phi_pct': (delta_phi / phi_antes * 100) if phi_antes > 0 else 0,
 'amplificacao': amp
 }

══
══════════════════════
P = NP* (AUTO-VALIDAÇÃO)

══
══════════════════════

class PNPStar:
 """
 Princípio P = NP* (Auto-Validação por Trabalho Criativo)

 O "Ovo de Colombo": A verificação É a criação.

 Quando trabalho criativo real é realizado, o token emitido se
 auto-valida pela própria existência do trabalho.

 "A demonstração É a prova."
 """

 @staticmethod
 def gerar_hash_delta() -> str:
 """
 Gera hash δ único para o token (instanton)

 O hash representa a "impressão digital" instantânea do trabalho criativo.
 """
 timestamp = datetime.now().isoformat()
 entropy = np.random.bytes(32).hex()
 data = f"{timestamp}:{entropy}:{CONST.ALPHA}"
 return hashlib.sha256(data.encode()).hexdigest()[:16]

 @staticmethod
 def auto_validar(epsilon: float, zeta: float) -> Tuple[bool, str]:
 """
 Verifica se token é auto-validado via P = NP*

 Condições de validade:
 - ε > 0 (benefício mútuo verificável)
 - ζ > 0.7 (consenso suficiente)⊕

 Returns:
 (is_valid, reason)
 """
 if epsilon <= CONST.LIMIAR_EPSILON:
 return False, f"ε={epsilon:.4f} ≤ {CONST.LIMIAR_EPSILON} (sem benefício mútuo)"

 if zeta < CONST.LIMIAR_ZETA:
 return False, f"ζ ={zeta:.4f} < {CONST.LIMIAR_ZETA} (consenso insuficiente)"⊕

 return True, f"P=NP* | ε={epsilon:.4f} > 0 ζ⊕ ={zeta:.4f} > 0.7"∧ ⊕

══
══════════════════════
ENTIDADES DO SISTEMA

══
══════════════════════

@dataclass
class Participante:
 """Participante do sistema HERMES"""
 id: str
 nome: str
 tipo: str # 'pessoa', 'organizacao', 'nacao'
 saldo: float = 0.0
 phi: float = 1.0
 vulnerabilidade: float = 0.5

 @property
 def epsilon(self) -> float:
 return PhiLiber.calc_epsilon(self.vulnerabilidade)

@dataclass
class TokenHERMES:
 """Token do sistema monetário HERMES"""
 id: str
 emissor: str
 receptor: str
 valor: float
 proposito: str
 epsilon: float
 zeta: float
 phi: float
 auto_validado: bool
 hash_delta: str
 timestamp: str = field(default_factory=lambda: datetime.now().isoformat())

 def to_dict(self) -> dict:
 return {
 'id': self.id,
 'emissor': self.emissor,
 'receptor': self.receptor,
 'valor': self.valor,
 'proposito': self.proposito,
 'epsilon': self.epsilon,
 'zeta': self.zeta,
 'phi': self.phi,
 'auto_validado': self.auto_validado,
 'hash_delta': self.hash_delta,
 'timestamp': self.timestamp
 }

══
══════════════════════
SIMULADOR UNIFICADO

══
══════════════════════

class SimuladorHERMESLiber:
 """
 Simulador Unificado HERMES ζ + Φ-LIBER v3.0⊕

 Integra:
 - Sistema monetário HERMES (tokens, ε, ζ)⊕
 - Teoria Φ-LIBER (energia criativa não-linear)
 - P = NP* (auto-validação por trabalho criativo)
 """

 def __init__(self):
 self.participantes: Dict[str, Participante] = {}
 self.tokens: List[TokenHERMES] = []
 self.logs: List[Dict] = []
 self.historico: List[Dict[str, float]] = []

 # Inicializar participantes padrão
 self._inicializar_participantes()

 def _inicializar_participantes(self):
 """Inicializa participantes padrão do sistema"""
 defaults = [
 ('RECIVITAS', 'Instituto ReCivitas', 'organizacao', 10000.0, 0.2),
 ('BRASIL', 'Brasil', 'nacao', 5000.0, 0.45),
 ('CHINA', 'China', 'nacao', 5000.0, 0.30),
 ('CIDADAO_01', 'Maria Silva', 'pessoa', 0.0, 0.70),
 ('CIDADAO_02', 'João Santos', 'pessoa', 0.0, 0.75),
 ('CIDADAO_03', 'Ana Costa', 'pessoa', 0.0, 0.68),
]

 for id_, nome, tipo, saldo, vuln in defaults:
 self.participantes[id_] = Participante(
 id=id_, nome=nome, tipo=tipo, saldo=saldo, vulnerabilidade=vuln
)

 self._log("Sistema HERMES ζ + Φ-LIBER v3.0 inicializado", "info")⊕
 self._log(f"α = {CONST.ALPHA:.6f} | γ = {CONST.GAMMA:.6f} | φ = {CONST.PHI:.6f}",
"info")

 def _log(self, msg: str, tipo: str = "info"):
 """Adiciona entrada ao log"""
 self.logs.append({
 'timestamp': datetime.now().strftime("%H:%M:%S"),
 'msg': msg,
 'tipo': tipo
 })
 if len(self.logs) > 100:
 self.logs.pop(0)

 #
══
══════════════════
 # GESTÃO DE PARTICIPANTES
 #
══
══════════════════

 def registrar_participante(self, id_: str, nome: str, tipo: str,
 saldo: float = 0.0, vuln: float = 0.5) -> bool:
 """Registra novo participante no sistema"""
 if id_ in self.participantes:
 self._log(f"Erro: Participante {id_} já existe", "error")
 return False

 self.participantes[id_] = Participante(
 id=id_, nome=nome, tipo=tipo, saldo=saldo, vulnerabilidade=vuln
)
 self._log(f"Participante registrado: {nome} ({tipo})", "info")
 return True

 def listar_participantes(self) -> List[Dict]:
 """Lista todos os participantes"""
 return [
 {
 'id': p.id,
 'nome': p.nome,
 'tipo': p.tipo,
 'saldo': p.saldo,
 'phi': p.phi,
 'vulnerabilidade': p.vulnerabilidade,
 'epsilon': p.epsilon
 }
 for p in self.participantes.values()
]

 #
══
══════════════════
 # EMISSÃO DE TOKENS (P = NP*)
 #
══
══════════════════

 def emitir_token(self, emissor: str, receptor: str, valor: float,
 proposito: str = "Transferência",
 eps_base: float = 0.8) -> Optional[TokenHERMES]:
 """
 Emite token HERMES com auto-validação P = NP*

 Args:

 emissor: ID do emissor
 receptor: ID do receptor
 valor: Valor em HERMES (H)
 proposito: Propósito da emissão
 eps_base: Fator ε base do propósito

 Returns:
 TokenHERMES se válido, None se inválido
 """
 # Verificar participantes
 if emissor not in self.participantes:
 self._log(f"Erro: Emissor {emissor} não encontrado", "error")
 return None

 if receptor not in self.participantes:
 self._log(f"Erro: Receptor {receptor} não encontrado", "error")
 return None

 if valor <= 0:
 self._log("Erro: Valor deve ser positivo", "error")
 return None

 p_emissor = self.participantes[emissor]
 p_receptor = self.participantes[receptor]

 # Calcular ε (benefício mútuo)
 beneficio_emissor = valor * CONST.ALPHA * (1 - p_emissor.vulnerabilidade)
 beneficio_receptor = valor * (1 - p_receptor.vulnerabilidade)
 epsilon = OperadoresHERMES.epsilon_beneficio(beneficio_emissor, beneficio_receptor)
 epsilon *= eps_base

 # Calcular ζ (consenso simulado)⊕
 votos = [np.random.choice([1, -0.5], p=[0.85, 0.15]) for _ in range(7)]
 zeta = OperadoresHERMES.zeta_convergencia(votos)

 # Calcular Φ (energia criativa)
 phi = PhiLiber.calc_phi(epsilon)

 # Auto-validação P = NP*
 auto_validado, razao = PNPStar.auto_validar(epsilon, zeta)

 # Criar token
 token = TokenHERMES(
 id=PNPStar.gerar_hash_delta(),
 emissor=emissor,
 receptor=receptor,
 valor=valor,
 proposito=proposito,
 epsilon=epsilon,
 zeta=zeta,
 phi=phi,
 auto_validado=auto_validado,

 hash_delta=PNPStar.gerar_hash_delta()
)

 if auto_validado:
 # Atualizar saldos
 p_receptor.saldo += valor

 # Atualizar Φ dos participantes
 p_receptor.phi = min(20, p_receptor.phi + phi * 0.1)
 p_emissor.phi = min(20, p_emissor.phi + phi * 0.05)

 # Reduzir vulnerabilidade do receptor (RBU effect)
 p_receptor.vulnerabilidade = max(0.05, p_receptor.vulnerabilidade - epsilon * 0.05)

 self.tokens.append(token)
 self.historico.append({'epsilon': epsilon, 'phi': phi, 'zeta': zeta})

 self._log(f" P=NP* Token AUTO-VALIDADO: {valor} H | {razao}", "pnp")✓
 else:
 self._log(f" Falha auto-validação: {razao}", "error")✗

 return token if auto_validado else None

 #
══
══════════════════
 # CENÁRIOS PRÉ-DEFINIDOS
 #
══
══════════════════

 def cenario_rbu(self, valor_por_pessoa: float = 100.0) -> List[TokenHERMES]:
 """
 Cenário: Emissão de RBU para todos os cidadãos

 RBU é INVESTIMENTO, não custo (demonstrado por e^(ε²))
 """
 self._log(" Executando cenário RBU...", "pnp")🎯
 tokens_emitidos = []

 for p in self.participantes.values():
 if p.tipo == 'pessoa':
 token = self.emitir_token(
 emissor='RECIVITAS',
 receptor=p.id,
 valor=valor_por_pessoa,
 proposito='RBU',
 eps_base=0.95
)
 if token:
 tokens_emitidos.append(token)

 self._log(f"RBU completa: {len(tokens_emitidos)} tokens emitidos", "info")
 return tokens_emitidos

 def cenario_comercio_bilateral(self, origem: str = 'BRASIL',
 destino: str = 'CHINA',
 valor: float = 1000.0) -> Optional[TokenHERMES]:
 """
 Cenário: Comércio bilateral sem intermediário (dólar/ouro)
 """
 self._log(f" Executando comércio {origem} → {destino}...", "pnp")🌍

 return self.emitir_token(
 emissor=origem,
 receptor=destino,
 valor=valor,
 proposito='Comércio Bilateral',
 eps_base=0.80
)

 def cenario_ciclo_completo(self) -> Dict[str, any]:
 """
 Cenário: Ciclo completo (RBU + Comércio + Investimento)
 """
 self._log(" Executando ciclo completo...", "pnp")🔄

 resultados = {
 'rbu': self.cenario_rbu(100.0),
 'comercio': self.cenario_comercio_bilateral('BRASIL', 'CHINA', 1000.0),
 'investimento': self.emitir_token('CHINA', 'RECIVITAS', 500.0, 'Investimento Social', 0.70)
 }

 return resultados

 #
══
══════════════════
 # SIMULADOR Φ-LIBER (RBU)
 #
══
══════════════════

 def simular_rbu_phi(self, vuln_inicial: float = 0.70,
 cobertura: float = 1.0,
 valor_rbu: float = 0.50) -> Dict[str, float]:
 """
 Simula impacto de RBU usando teoria Φ-LIBER

 Args:
 vuln_inicial: Vulnerabilidade inicial [0, 1]
 cobertura: Cobertura da RBU [0, 1]
 valor_rbu: Valor como % do mínimo vital [0, 1]

 Returns:
 Métricas antes/depois incluindo amplificação
 """
 # ANTES da RBU
 eps_antes = PhiLiber.calc_epsilon(vuln_inicial)
 phi_antes = PhiLiber.calc_phi(eps_antes)
 exp_antes = np.exp(eps_antes ** 2)

 # DEPOIS da RBU
 vuln_depois = PhiLiber.aplicar_rbu(vuln_inicial, cobertura, valor_rbu)
 eps_depois = PhiLiber.calc_epsilon(vuln_depois)
 phi_depois = PhiLiber.calc_phi(eps_depois)
 exp_depois = np.exp(eps_depois ** 2)

 # Amplificação
 resultado = PhiLiber.amplificacao_nao_linear(eps_antes, eps_depois)
 resultado['vuln_inicial'] = vuln_inicial
 resultado['vuln_depois'] = vuln_depois
 resultado['cobertura'] = cobertura
 resultado['valor_rbu'] = valor_rbu

 return resultado

 #
══
══════════════════
 # MÉTRICAS DO SISTEMA
 #
══
══════════════════

 def metricas_globais(self) -> Dict[str, float]:
 """Retorna métricas globais do sistema"""
 if not self.tokens:
 return {
 'participantes': len(self.participantes),
 'tokens': 0,
 'tokens_validos': 0,
 'total_emitido': 0.0,
 'phi_medio': 0.0,
 'epsilon_medio': 0.0,
 'zeta_medio': 0.0,
 'amplificacao': 1.0,
 'taxa_validacao': 0.0
 }

 tokens_validos = [t for t in self.tokens if t.auto_validado]
 total_emitido = sum(t.valor for t in tokens_validos)

 eps_medio = np.mean([t.epsilon for t in tokens_validos]) if tokens_validos else 0
 phi_medio = np.mean([t.phi for t in tokens_validos]) if tokens_validos else 0
 zeta_medio = np.mean([t.zeta for t in tokens_validos]) if tokens_validos else 0

 amplificacao = np.exp(eps_medio ** 2) if eps_medio > 0 else 1.0

 return {
 'participantes': len(self.participantes),
 'tokens': len(self.tokens),
 'tokens_validos': len(tokens_validos),
 'total_emitido': total_emitido,
 'phi_medio': phi_medio,
 'epsilon_medio': eps_medio,
 'zeta_medio': zeta_medio,
 'amplificacao': amplificacao,
 'taxa_validacao': len(tokens_validos) / len(self.tokens) * 100 if self.tokens else 0
 }

 def comparacao_paradigmas(self) -> List[Dict]:
 """Compara paradigmas: Dólar vs Ouro/BRICS vs HERMES"""
 return [
 {
 'aspecto': 'Lastro',
 'dolar': 'Tesouro Americano',
 'ouro_brics': 'Metal físico Tier 1',
 'hermes': 'Confiança ζ + Φ regenerativo'⊕
 },
 {
 'aspecto': 'Bootstrap',
 'dolar': 'Dependência histórica',
 'ouro_brics': 'Quem tem ouro começa',
 'hermes': 'P=NP* Auto-validação'
 },
 {
 'aspecto': 'Verificação',
 'dolar': 'Confiança externa (EUA)',
 'ouro_brics': 'Posse física',
 'hermes': 'ε > 0 ζ > 0.7 verificável'∧ ⊕
 },
 {
 'aspecto': 'Escala',
 'dolar': 'Linear',
 'ouro_brics': 'Linear',
 'hermes': 'Não-linear e^(ε²)'
 },
 {
 'aspecto': 'Risco',
 'dolar': 'Sanções, congelamento',
 'ouro_brics': 'Novo colonialismo dourado',
 'hermes': 'Adesão voluntária'
 },
 {
 'aspecto': 'Para Brasil',
 'dolar': 'Dependência/vulnerabilidade',
 'ouro_brics': 'Subordinação a quem tem ouro',

 'hermes': 'Autonomia + RBU viável'
 },
 {
 'aspecto': 'Natureza',
 'dolar': 'Commodity (papel)',
 'ouro_brics': 'Commodity (metal)',
 'hermes': 'RELAÇÃO (compositor)'
 }
]

 #
══
══════════════════
 # EXPORTAÇÃO
 #
══
══════════════════

 def exportar_estado(self) -> Dict:
 """Exporta estado completo do sistema"""
 return {
 'constantes': {
 'PHI': CONST.PHI,
 'ALPHA': CONST.ALPHA,
 'GAMMA': CONST.GAMMA,
 'TAU_0': CONST.TAU_0,
 'LIMIAR_ZETA': CONST.LIMIAR_ZETA,
 'LIMIAR_EPSILON': CONST.LIMIAR_EPSILON
 },
 'participantes': self.listar_participantes(),
 'tokens': [t.to_dict() for t in self.tokens],
 'metricas': self.metricas_globais(),
 'historico': self.historico,
 'logs': self.logs[-20:] # Últimos 20 logs
 }

 def exportar_json(self, filepath: str):
 """Exporta estado para arquivo JSON"""
 with open(filepath, 'w', encoding='utf-8') as f:
 json.dump(self.exportar_estado(), f, indent=2, ensure_ascii=False)
 self._log(f"Estado exportado para {filepath}", "info")

══
══════════════════════
DEMONSTRAÇÃO DA NÃO-LINEARIDADE

══
══════════════════════

def demonstrar_nao_linearidade():

 """Demonstra a não-linearidade e^(ε²) da teoria Φ-LIBER"""
 print("\n" + "═" * 70)
 print("DEMONSTRAÇÃO: NÃO-LINEARIDADE e^(ε²)")
 print("═" * 70)
 print("\n\"Por que pequenos ganhos de liberdade geram grandes ganhos de energia\"\n")

 valores_eps = [0.2, 0.5, 0.8, 1.0, 1.5, 2.0]

 print(f"{'ε':<8} {'e^(ε²)':<12} {'Φ':<12} {'Δε':<12} {'Amplificação'}")
 print("-" * 60)

 eps_anterior = valores_eps[0]
 exp_anterior = np.exp(eps_anterior ** 2)

 for eps in valores_eps:
 exp_term = np.exp(eps ** 2)
 phi = PhiLiber.calc_phi(eps)

 if eps == valores_eps[0]:
 print(f"{eps:<8.2f} {exp_term:<12.2f} {phi:<12.2f} {'—':<12} {'—'}")
 else:
 delta_eps = (eps - eps_anterior) / eps_anterior * 100
 delta_exp = (exp_term - exp_anterior) / exp_anterior * 100
 amp = delta_exp / delta_eps if delta_eps > 0 else 1
 print(f"{eps:<8.2f} {exp_term:<12.2f} {phi:<12.2f} {f'+{delta_eps:.0f}%':<12}
{amp:.2f}x")

 eps_anterior = eps
 exp_anterior = exp_term

 print("\n" + "-" * 60)
 print("RESULTADO: De ε=0.2 para ε=1.5:")
 print(f" • Liberdade aumenta: {(1.5/0.2 - 1)*100:.0f}%")
 print(f" • e^(ε²) aumenta: {(np.exp(1.5**2)/np.exp(0.2**2) - 1)*100:.0f}%")
 print("\n → 21% mais liberdade → 813% mais energia criativa")
 print(" → RBU é INVESTIMENTO, não custo!")

══
══════════════════════
EXECUÇÃO PRINCIPAL

══
══════════════════════

def main():
 """Execução principal do simulador"""

 print("═" * 70)
 print("SIMULADOR UNIFICADO HERMES ζ + Φ-LIBER v3.0")⊕
 print("═" * 70)

 print()
 print("\"Nem por ouro. Nem muito menos por um punhado de dólar,")
 print(" nem a menos, nem a mais.\"")
 print(" — Marcus Brancaglione")
 print()
 print("═" * 70)

 # Criar simulador
 sim = SimuladorHERMESLiber()

 #
══
═══════════════════
 # 1. CONSTANTES FUNDAMENTAIS
 #
══
═══════════════════

 print("\n[1] CONSTANTES FUNDAMENTAIS")
 print("-" * 50)
 print(f" φ (razão áurea) = {CONST.PHI:.10f}")
 print(f" α (constante LIBER) = {CONST.ALPHA:.10f}")
 print(f" γ (Euler-Mascheroni)= {CONST.GAMMA:.10f}")
 print(f" τ₀ (período base) = {CONST.TAU_0:.10f}")

 #
══
═══════════════════
 # 2. DEMONSTRAÇÃO NÃO-LINEARIDADE
 #
══
═══════════════════

 demonstrar_nao_linearidade()

 #
══
═══════════════════
 # 3. SIMULAÇÃO RBU (Φ-LIBER)
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("SIMULAÇÃO RBU: BRASIL (Φ-LIBER)")
 print("═" * 70)

 resultado_rbu = sim.simular_rbu_phi(
 vuln_inicial=0.70,
 cobertura=1.0,
 valor_rbu=0.50
)

 print(f"\nParâmetros:")
 print(f" • Vulnerabilidade inicial: {resultado_rbu['vuln_inicial']*100:.0f}%")
 print(f" • Cobertura RBU: {resultado_rbu['cobertura']*100:.0f}%")
 print(f" • Valor RBU: {resultado_rbu['valor_rbu']*100:.0f}% do mínimo vital")

 print(f"\nResultados:")
 print(f" • Vulnerabilidade: {resultado_rbu['vuln_inicial']*100:.0f}% →
{resultado_rbu['vuln_depois']*100:.0f}%")
 print(f" • ε (liberdade): {resultado_rbu['eps_antes']:.4f} → {resultado_rbu['eps_depois']:.4f}
({resultado_rbu['delta_eps_pct']:+.1f}%)")
 print(f" • e^(ε²): {resultado_rbu['exp_antes']:.4f} → {resultado_rbu['exp_depois']:.4f}")
 print(f" • Φ (energia): {resultado_rbu['phi_antes']:.2f} → {resultado_rbu['phi_depois']:.2f}
({resultado_rbu['delta_phi_pct']:+.1f}%)")
 print(f" • Amplificação: {resultado_rbu['amplificacao']:.2f}x")

 print(f"\n → ROI Social: Cada R$1 em RBU gera ~R${resultado_rbu['amplificacao']:.2f} em
energia criativa")

 #
══
═══════════════════
 # 4. CENÁRIO RBU (HERMES)
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("CENÁRIO RBU: EMISSÃO DE TOKENS (HERMES)")
 print("═" * 70)

 tokens_rbu = sim.cenario_rbu(100.0)

 print(f"\nTokens emitidos: {len(tokens_rbu)}")
 for t in tokens_rbu:
 print(f" • {t.receptor}: {t.valor} H | ε={t.epsilon:.4f} | ζ ={t.zeta:.4f} | Φ={t.phi:.2f}")⊕

 #
══
═══════════════════
 # 5. CENÁRIO COMÉRCIO BILATERAL
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("CENÁRIO COMÉRCIO: BRASIL → CHINA (HERMES)")
 print("═" * 70)

 token_comercio = sim.cenario_comercio_bilateral('BRASIL', 'CHINA', 1000.0)

 if token_comercio:

 print(f"\nToken emitido:")
 print(f" • ID: {token_comercio.id}")
 print(f" • Valor: {token_comercio.valor} H")
 print(f" • ε (benefício mútuo): {token_comercio.epsilon:.4f}")
 print(f" • ζ (consenso): {token_comercio.zeta:.4f}")⊕
 print(f" • Φ (energia): {token_comercio.phi:.2f}")
 print(f" • Hash δ: {token_comercio.hash_delta}")
 print(f" • Auto-validado: {' SIM (P=NP*)' if token_comercio.auto_validado else ' NÃO'}")✓ ✗

 #
══
═══════════════════
 # 6. MÉTRICAS GLOBAIS
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("MÉTRICAS GLOBAIS DO SISTEMA")
 print("═" * 70)

 metricas = sim.metricas_globais()

 print(f"\n • Participantes: {metricas['participantes']}")
 print(f" • Tokens emitidos: {metricas['tokens']}")
 print(f" • Tokens válidos: {metricas['tokens_validos']}")
 print(f" • Taxa de validação: {metricas['taxa_validacao']:.1f}%")
 print(f" • Total emitido: {metricas['total_emitido']:.2f} H")
 print(f" • ε médio: {metricas['epsilon_medio']:.4f}")
 print(f" • ζ médio: {metricas['zeta_medio']:.4f}")⊕
 print(f" • Φ médio: {metricas['phi_medio']:.2f}")
 print(f" • Amplificação e^(ε²): {metricas['amplificacao']:.2f}x")

 #
══
═══════════════════
 # 7. COMPARAÇÃO DE PARADIGMAS
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("COMPARAÇÃO DE PARADIGMAS MONETÁRIOS")
 print("═" * 70)

 comparacao = sim.comparacao_paradigmas()

 print(f"\n{'Aspecto':<15} {'Dólar':<25} {'Ouro/BRICS':<25} {'HERMES'}")
 print("-" * 90)

 for c in comparacao:
 print(f"{c['aspecto']:<15} {c['dolar']:<25} {c['ouro_brics']:<25} {c['hermes']}")

 #
══
═══════════════════
 # 8. EXPORTAR ESTADO
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("EXPORTAÇÃO")
 print("═" * 70)

 sim.exportar_json("/mnt/user-data/outputs/estado_hermes_liber.json")
 print("\n Estado exportado para estado_hermes_liber.json")✓

 #
══
═══════════════════
 # CONCLUSÃO
 #
══
═══════════════════

 print("\n" + "═" * 70)
 print("CONCLUSÃO")
 print("═" * 70)
 print()
 print(" P = NP* | A verificação É a criação")
 print(" \"A demonstração É a prova.\"")
 print()
 print(" NEM AUTOR, NEM LEITOR. COMPOSITOR.")
 print()
 print("═" * 70)
 print("Instituto ReCivitas • CC BY-SA 4.0 + RobinRight v3.0 ζ ")Ⓐ ⊕
 print("═" * 70)

 return sim

if __name__ == "__main__":
 simulador = main()

